Extracorporeal treatment of intoxicationsAnne-Corne´lie J.M. de Pont
The purpose of this article is to provide the critical care
Although intoxication is a common problem in adult and
clinician with a comprehensive review of the indications for
pediatric medicine, serious morbidity is unusual. In 2004,
extracorporeal elimination of toxic substances, to
only 3% of all toxic exposures reported to the Toxic
summarize the different techniques and the intoxications for
Exposure Surveillance System of the American Associ-
which these techniques are suitable.
ation of Poison Centers were treated in an ICU and in only
0.05% extracorporeal treatment was needed Extracor-
In the last year, several excellent reviews about toxicological
poreal treatment, however, may be lifesaving in victims
topics have been published. These reviews focused on
intoxications in children, the approach of the patient with an
mechanisms are impaired. This article reviews the charac-
unknown overdose, management of intoxications with
teristics of different extracorporeal techniques and sum-
salicylates, b-blockers and calcium antagonists and liver
marizes the intoxications for which they are suitable.
support systems. Important developments include the useof high-flux, high-efficiency membranes and albumin dialysis
using the molecular adsorbent recirculating system
The use of extracorporeal techniques to remove toxins is
(MARS). This system offers possibilities for the removal of
justified if there is an indication of severe toxicity
protein-bound substances such as diltiazem, phenytoin and
and if the total body elimination of the toxin can be
increased by 30% or more by using an extracorporeal
technique Whether extracorporeal removal is possible
Although large randomized controlled trials are scarce in the
depends on characteristics of the toxin itself and of the
field of toxicology, the treatment of intoxications is
elimination technique used As the majority of
becoming more and more evidence based. This review
reported toxic exposures occur in children of less than
summarizes the current knowledge and recommendations
6 years old it is important to know which substances
concerning the extracorporeal treatment of intoxications
are lethal for children, even in low doses These
and discusses new developments in the field, such as the
use of high-flux, high-efficiency membranes and albumindialysis.
Techniques available for extracorporealremoval of toxins
The extracorporeal techniques most frequently employed
hemodialysis, hemofiltration, hemoperfusion, intoxication,
for the removal of toxins are hemodialysis, continuous
molecular adsorbent recirculating system (MARS).
Curr Opin Crit Care 13:668–673. ß 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Adult Intensive Care Unit, Academic Medical Center, University of Amsterdam,
During hemodialysis, toxins and other substances are
cleared from the blood by diffusion across a semiperme-
Correspondence to Anne-Corne´lie J.M. de Pont, Adult Intensive Care Unit, C3-327,
able membrane down a concentration gradient from blood
Academic Medical Center, Meibergdreef 9, NL-1105 AZ Amsterdam,
into dialysate. In order to be removed by hemodialysis, the
The NetherlandsTel: +31 20 5669111 ext 59229; fax: +31 20 5669568;
toxic substance must be water soluble and must have a low
molecular weight, low protein binding and a low volume of
Current Opinion in Critical Care 2007, 13:668–673
distribution (During hemodialysis, the clearanceof a toxic substance depends on membrane surface area
and type, as well as on blood and dialysate flow rates. The
larger the membrane surface, the greater the amount oftoxin removed. Newer high-flux membranes can also
ß 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins1070-5295
remove high-molecular weight substances. Increasingblood and dialysate flow rates can increase the concen-tration gradient between blood and dialysate, thus opti-mizing the rates of diffusion and elimination. The majordrawback of hemodialysis is the risk of rebound toxicity
Copyright Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
Extracorporeal treatment of intoxications de Pont
Table 3 Substances able to kill children at low doses
(1) Ingested quantity associated with severe toxicity
(2) Ingestion of a toxin with serious delayed effects
(5) Clinical evidence of severe toxicity: hypotension, coma,
metabolic acidosis, respiratory depression, dysrhythmias
Table 2 Necessary properties for extracorporeal removal bythree different techniques
Hemodialysis Hemofiltration Hemoperfusion
During hemoperfusion, the blood passes through a
cartridge containing a sorbent material able to adsorb
the toxin. There are three types of sorbents: charcoal-
Endogenous clearance <4 ml/min/kg <4 ml/min/kg
based sorbents, synthetic resins and anion exchange resins.
In order to be removed by hemoperfusion, the toxic
substance must have binding affinity to the sorbent inthe cartridge and a low volume of distribution (
after cessation of the treatment, due to redistribution of
Charcoal efficiently removes molecules in the 1000–
1500 kDa range, but does not remove protein-bound mol-ecules Resins are more effective in the removal of
protein-bound and lipid-soluble molecules. Despite their
In continuous hemofiltration techniques such as continu-
efficacy, the use of hemoperfusion cartridges has declined
ous venovenous hemofiltration (CVVH) and continuous
over the last 20 years, due to limitations of their indications
venovenous hemodiafiltration (CVVHD), the blood
and shelf life. Moreover, hemoperfusion is technically
passes through large pore hollow fibres, allowing the
more difficult to perform than hemodialysis, and
convective removal of molecules up to 40 kDa. The
lacks the possibility of correcting acid–base, fluid and
advantages of continuous techniques are their applica-
bility in hemodynamically unstable patients and theprolonged duration of therapy, minimizing the risk of a
rebound effect The disadvantage of continuous tech-
MARS is a blood purification system, aimed at removing
niques is their lower clearance compared with hemodia-
albumin-bound toxic molecules It consists of
lysis. In postdilutional hemofiltration, the clearance is
three serial extracorporeal circuits: a blood circuit, an
equal to the ultrafiltrate flow rate, which is usually no
albumin detoxification circuit and a hemodialysis circuit
more than 4 l/h or 67 ml/min, whereas with hemodialysis a
. The patient’s blood passes the blood com-
clearance up to 500 ml/min can be achieved
partment of a high-flux dialyzer, where albumin flows
Figure 1 Molecular Adsorbent Recirculating System (MARS) circuit
Reprinted with permission from Covic et al.
Copyright Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
through the dialysate compartment in a countercurrent
volume of 0.6–0.9 l/kg body weight and it is not protein
fashion. Protein-bound and water soluble substances can
bound, which makes it an ideal substance to be removed by
enter the albumin circuit by means of diffusion. The
hemodialysis. With hemodialysis, an extraction ratio of
albumin circuit contains two filters, an activated charcoal
90% and a clearance ranging from 63 to 114 ml/min is
filter which absorbs the toxins and an anion-exchange
achieved, making it the treatment of choice for extracor-
resin filter to cleanse the albumin. Finally, the albumin
poreal lithium removal Hemodialysis is even more
passes through the blood compartment of a second
effective in removing lithium than the kidney itself, as
dialyzer, where small molecules are filtered down a
70–80% of lithium filtered by the kidney is reabsorbed in
concentration gradient to bicarbonate dialysate .
the proximal tubule. Hemodialysis should be started in
Although the efficacy of MARS in the removal of
cases of central nervous system abnormalities such as
protein-bound drugs such as diltiazem, phenytoin and
confusion, stupor, coma or seizures. A negative anion
theophylline has been demonstrated in case reports, the
gap and an elevated osmolar gap may be diagnostic clues
use of MARS is limited by its availability, technical
Although the serum lithium level is effectively
lowered by hemodialysis, a rebound rise in serum levelsoccurs 6–8 h after cessation of the treatment, as lithium
redistributes to the circulation from the interstitial space
Therefore, hemodialysis should be continued until
Due to the characteristics required for extracorporeal
the serum lithium level remains below 1 mEq/l. In this
removal, the number of substances suitable for this
respect, continuous techniques such as CVVH and
technique is limited. Drugs and toxins for which extra-
CVVHD may be advantageous, as they couple a longer
corporeal removal is indicated are summarized in
running time to an acceptable clearance Depending on
and will be discussed in alphabetical order. When one of
the ultrafiltrate flow rate, clearances up to 67 ml/min can be
these agents is suspected, consultation of a nephrologist
reached by postdilutional hemofiltration
The biguanide metformin is the most widely used oral
Phenobarbital is a long-acting barbiturate, commonly used
antidiabetic agent in the world, however it carries the
as an anticonvulsant since 1912 It has a low volume of
risk of metformin associated lactic acidosis (MALA),
distribution, a slow intrinsic elimination and it binds
which usually occurs in cases of overdose or renal failure.
readily to charcoal. Most patients with phenobarbital
Although rare, MALA carries a mortality risk of 50%
overdose can be managed by means of oral administration
Metformin has a molecular weight of 166 Da, is
of activated charcoal and urine alkalization Whether
not protein bound and is excreted by the kidney by
extracorporeal treatment for barbiturate overdose is indi-
means of glomerular filtration and tubular secretion. Its
cated depends on the severity of the toxicity and the
renal clearance therefore exceeds the creatinine clear-
response to therapy, rather than on the serum level.
ance and ranges from 552 to 642 ml/min, reaching a
Extracorporeal removal should be considered in cases of
plasma elimination half life of 1.5 – 4.7 h Metformin
severe hypotension, respiratory depression or deep and
intoxication itself, however, can induce acute renal
prolonged coma. Until recently, hemoperfusion was the
failure, which aggravates toxicity By means of
treatment of choice With the use of high-flux, high-
hemodialysis or hemofiltration, metformin can be
efficiency membranes, however, similar or even better
removed with clearances up to 170 ml/min Extra-
elimination can be obtained with hemodialysis
corporeal treatment should be performed in cases ofrefractory lactic acidosis or impaired renal function
Lithium is widely used in the treatment of bipolar affectivedisorders. It has a molecular weight of 74 Da, a distribution
SalicylatesAt therapeutic levels, salicylates have over 90% protein
Table 4 Substances for which extracorporeal treatment may be
binding, which decreases to 50–75% at toxic levels, due to
saturation. Salicylates are metabolized in the liver and
eliminated by the kidney. The elimination half life is dosedependent, ranging from 2 h at a low dose to 30 h at a high
dose. Treatment with hemodialysis should be started
when the serum level exceeds 700 mg/l or when the clinical
situation deteriorates (altered mental status, respiratory
failure, pulmonary edema, severe acid–base disturbances,
renal failure) Although hemoperfusion is more
Copyright Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
Extracorporeal treatment of intoxications de Pont
recommended, since it more rapidly corrects metabolic
ous half life of formic acid was 205 Æ 25 min, whereas the
hemodialysis half life was 185 Æ 63 min
Theophylline is more than 50% protein bound and under
Isopropanol is a colorless liquid with a bitter taste, used in
normal conditions metabolized by the p450 enzyme in
the manufacturing of acetone and glycerin. The minimal
the liver. At therapeutic levels its elimination obeys first-
lethal dose for adults is approximately 100 ml. Unlike
order kinetics, while limitation of the enzyme capacity
ethylene glycol and methanol, most of the toxic effects
results in zero order kinetics at higher concentrations
of isopropanol are due to the parent compound itself.
Since theophylline binds readily to charcoal, hemo-
Isopropanol is metabolized to acetone by alcohol dehydro-
perfusion is the treatment of choice In acute toxicity,
genase. The clinical signs of intoxication occur within
it should be started at serum levels greater than 90 mg/ml,
1 h of ingestion and include gastrointestinal symptoms,
and in chronic intoxication at levels greater than 40 mg/ml
confusion, stupor and coma. Severe intoxications may
in the presence of signs of severe toxicity. When hemo-
present with hypotension due to cardiac depression and
perfusion is not available, hemofiltration is also effective.
vasodilatation Hypotension is the strongest predictor
By means of hemofiltration, the half life of theophylline
of mortality. Inhibition of alcohol dehydrogenase is
could be reduced from 5 days to 6 h in a case of severe
not indicated, as acetone is less toxic than isopropanol.
theophylline poisoning By means of MARS, even a
Hemodialysis is indicated for patients with an isopropanol
level greater than 4 g/l and significant central nervoussystem depression, renal failure or hypotension
although this indication has been debated
The toxic alcohols include ethylene glycol, methanoland isopropanol.
Valproic acidValproic acid is a 144 Da branched chain carboxylic acid
primarily metabolized in the liver. At therapeutic levels it
Ethylene glycol is a compound used in antifreeze and
is 90% protein bound, but protein binding decreases at
windshield washer solutions. It is converted by alcohol
toxic serum levels due to saturation. Valproic acid has a
dehydrogenase to glycolate, which causes renal failure
small volume of distribution (0.1–0.5 l/kg) and a plasma
and pulmonary and cerebral edema. Therefore, the
half life of 6–16 h Clinical manifestations of toxicity
mainstay of the treatment of ethylene glycol poisoning
vary from mild confusion and lethargy to coma and death.
is the inhibition of alcohol dehydrogenase by means of
In addition to neurological symptoms, valproate can cause
ethanol or fomepizole Hemodialysis should be
hypothermia, hypotension, tachycardia, gastrointestinal
started when signs and symptoms of severe toxicity are
disturbances and hepatotoxicity as well as hypernatremia,
present (deteriorating vital signs, severe metabolic
hyperosmolarity, hypocalcemia and metabolic acidosis.
acidosis, acute kidney injury, pulmonary or cerebral
Valproic acid was demonstrated to be eliminated by
edema) or when the serum level exceeds 0.5 g/l
hemodialysis alone and in combination with hemoperfu-
Refractory serum hyperosmolality and a glycolic acid
sion. With these techniques half lives of 2–4 h could be
level greater than 10 mmol/l have also been described
reached Extracorporeal treatment is justified in
as indications Hemodialysis effectively clears
cases of refractory hemodynamic instability or metabolic
glycolate with an elimination half life of 155 Æ 474 min
compared with a spontaneous elimination half life of625 Æ 474 min
Substances for which extracorporeal removalmay be possible
For some drugs and toxins extracorporeal removal is
Under physiological circumstances, methanol is metab-
possible, but the effect on outcome is uncertain.
olized by alcohol dehydrogenase to formaldehyde, and byaldehyde dehydrogenase to formic acid, which is respon-
sible for the acidosis and toxic manifestations. Therefore,
Carbamazepine is an iminostilbene derivative anticonvul-
the primary step in the treatment of methanol intoxication
sant. It has a molecular weight of 236 Da, is 80–85%
is inhibition of alcohol dehydrogenase with ethanol or
protein bound and has a target serum level of 4–12 mg/l.
fomepizole The usual criteria for hemodialysis
Under normal circumstances, it is metabolized in the liver
include severe acidosis, visual impairment, renal failure,
and eliminated by the kidney, with an elimination half life
electrolyte disturbances or a plasma methanol concen-
of 2–6 days. Acute overdose can result in cardiovascular
tration greater than 0.5 g/l Hemodialysis, however,
and neurologic impairment with possible fatal out-
does not substantially enhance the endogenous clearance
come Although supportive care is usually sufficient
of formate: in a prospective multicenter trial the endogen-
extracorporeal removal by either hemoperfusion or
Copyright Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
hemodialysis may be indicated in patients with unstable
cardiac status, status epilepticus or refractory bowel hypo-
The treatment of intoxication with an extracorporeal tech-
motility A recent article demonstrated that
nique is justified if there are signs of severe toxicity and if
both techniques are equally effective, reaching a half life of
elimination of the toxin can be increased by 30% or more
using an extracorporeal technique. Hemodialysis is mostfrequently indicated and the use of high-flux, high-effi-
ciency membranes is recommended for the removal of
Calcium blocker overdose can result in marked and
substances with a higher molecular weight. Continuous
sustained hypotension with a mortality rate as high as
techniques are preferable in hemodynamically unstable
10% Diltiazem is a calcium channel blocker which
patients and in cases of toxins with rapid redistribution.
is 80% protein bound at therapeutic levels and has a
Hemoperfusion is infrequently used because of its limited
distribution volume of 5 l/kg. Therefore, it is not suit-
indications and technical difficulties. For some highly
able for hemodialysis or hemofiltration Recently,
protein bound substances such as diltiazem, phenytoin
however, the effective removal of diltiazem from the
and theophylline, albumin dialysis may play a role.
circulation by means of albumin dialysis (MARS) wasdescribed, reaching a half life of approximately 16 h
Papers of particular interest, published within the annual period of review, havebeen highlighted as:
Phenytoin is one of the most commonly used antiepi-
Additional references related to this topic can also be found in the Current
leptic drugs. It is 90% albumin bound, metabolized in the
World Literature section in this issue (p. 753).
liver and excreted by the kidney. Its median elimination
Watson WA, Litovitz TL, Rodgers GC, et al. 2004 annual report of the
half life is 24 h, ranging from 7 to 42 h. It has a narrow
American Association of Poison Control Centers Toxic Exposure SurveillanceSystem. Am J Emerg Med 2005; 23:589–666.
therapeutic range and a serum level exceeding 80 mM is
Orlowski JM, Hou S, Leikin JB. Extracorporeal removal of drugs and toxins. In:
associated with clinically relevant toxicity. Although
Ford M, Delaney KA, Ling L, et al., editors. Clinical toxicology, 1st ed. St Louis,
there is no evidence that enhanced elimination is
MO: WB Saunders Company; 2001. pp. 43–50.
beneficial phenytoin was described to be effectively
Criddle LM. An overview of pediatric poisonings. AACN Adv Crit Care 2007;
removed by albumin dialysis (MARS), reaching a half life
This is a practical review, summarizing the most important pediatric intoxications.
Henry K, Harris CR. Deadly ingestions. Pediatr Clin N Am 2006; 53:293–315.
Michael JB, Sztajnkrycer MD. Deadly pediatric poisons: nine common agentsthat kill at low doses. Emerg Med Clin N Am 2004; 1019–1050.
Although the reports of severe and fatal mushroom
Feinfeld DA, Rosenberg JW, Winchester JF. Three controversial issues in
poisonings have increased during the past 50 years, fatal-
extracorporeal toxin removal. Semin Dial 2006; 19:358–362.
ities due to mushroom poisoning are rare (0.0006%)
Barshes NR, Gay N, Williams B, et al. Support for the acutely failing liver:a comprehensive review of historic and contemporary strategies. J Am Coll
Most fatalities are caused by cyclopeptide-containing
species from the genera Amanita, Galerina and Lepiota
Shalkham AS, Kirrane BM, Hoffman RS, et al. The availability and use of
and are the result of late-onset hepatorenal failure
charcoal hemoperfusion in the treatment of poisoned patients. Am J KidneyDis 2006; 48:239–241.
The cyclopeptides are divided into three classes of
Santoro A, Mancini E, Ferramosca E, Faenza S. Liver support systems. Contrib
peptides: amatoxins, phallotoxins and virotoxins. The
amatoxins may be enterohepatically recirculated and
In this review article, the different techniques designed for support of the failingliver are discussed.
interact with RNA polymerase II, leading to liver cell
10 Nalesso F, Brendolan A, Crepaldi C, et al. Albumin dialysis and plasma
necrosis by inhibition of protein synthesis. Amatoxins
filtration adsorption dialysis system. Contrib Nephrol 2007; 156:411 –418.
exhibit limited protein binding and are eliminated in
This review outlines the characteristics of three different types of albumin dialysisand plasma filtration adsorption dialysis.
urine, vomitus and feces. Theoretically, it should be
11 Covic A, Goldsmith DJ, Gusbeth-Tatomir P, et al. Successful use of the
possible to eliminate them by hemoperfusion, as they
molecular adsorbent regenerating system (MARS) dialysis for the treatment offulminant hepatic failure in children accidentally poisoned by toxic mushroom
have a low molecular weight (900 Da) and a high affinity
ingestion. Liver Int 2003; 23 (Suppl 3):21–27.
for charcoal and polymers. The utility of extracorporeal
12 Tan HK. Molecular adsorbent recirculating system (MARS). Ann Acad Med
removal, however, is questionable, given the low serum
concentration of amatoxins and the fact that the intra-
13 Erickson TB, Thompson TM, Lu JJ. The approach to the patient with an
unknown overdose. Emerg Med Clin N Am 2007; 25:249–281.
cellular amatoxin concentration reached within 1 h of
This practical guideline provides recommendations on how to manage a patient
ingestion is crucial to the magnitude of liver cell necrosis,
14 Lal R, Faiz S, Garg RK, et al. Use of continuous venovenous hemodiafiltration
as it determines the extent of mRNA blockage In
in a case of severe phenobarbital poisoning. Am J Kidney Dis 2006; 48:E13–
this respect, the success of MARS in the treatment
of mushroom poisoning may be attributed to its liver
15 Palmer BF. Effectiveness of hemodialysis in the extracorporeal therapy of
phenobarbital overdose. Am J Kidney Dis 2000; 36:640–643.
support function as a bridge to liver cell regeneration or
16 Jacobs F, Brivet FG. Conventional haemodialysis significantly lowers toxic
levels of phenobarbital. Nephrol Dial Transplant 2004; 19:1663 –1664.
Copyright Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
Extracorporeal treatment of intoxications de Pont
17 Eyer F, Pfab R, Felgenhauer N, et al. Lithium poisoning: pharmacokinetics and
35 Moreau CL, Kerns W II, Tomaszewski CA, et al. Glycolate kinetics and
clearance during different therapeutic measures. J Clin Pharmacol 2006;
hemodialysis clearance in ethylene glycol poisoning. J Toxicol Clin Toxicol
18 Sood MM, Richardson R. Negative anion gap and elevated osmolar gap due
36 Barceloux DG, Bond GR, Krenzelok EP, et al. American Academy of Clinical
to lithium overdose. CMAJ 2007; 176:921 –923.
Toxicology practice guidelines on the treatment of methanol poisoning.
This article focuses on negative anion gap and elevated osmolar gap as simple
J Toxicol Clin Toxicol 2002; 40:415–446.
diagnostic features of lithium poisoning.
37 Kerns W II, Tomaszewski C, McMartin K, et al. Formate kinetics in methanol
19 Borras-Blasco J, Sirvent AD, Navarro-Ruiz A, et al. Unrecognized delayed
poisoning. J Toxicol Clin Toxicol 2002; 40:137–143.
toxic lithium peak concentration in an acute poisoning with sustained release
38 Abramson S, Singh AK. Treatment of the alcohol intoxications: ethylene
lithium product. South Med J 2007; 100:321 –323.
glycol, methanol and isopropanol. Curr Opin Nephrol Hypertens 2000;
20 Waring WS. Management of lithium toxicity. Toxicol Rev 2006; 25:221–230.
21 Galea M, Jelacin N, Bramham K, White I. Severe lactic acidosis and rhabdo-
39 Trullas JC. Life-threatening isopropyl alcohol intoxication: is hemodialysis
myolysis following metformin and ramipril overdose. Br J Anaesth 2007;
really necessary? Vet Hum Toxicol 2004; 46:282–284.
40 Al Aly Z, Yalamanchili P, Gonzalez E. Extracorporeal management of valproic
This article emphasizes the importance of early extracorporeal treatment in the
acid toxicity: a case report and review of the literature. Semin Dial 2005;
management of metformin intoxication.
22 Davidson MB, Peters AL. An overview of metformin in the treatment of type 2
41 Meek MF, Broekroelofs J, Yska JP, et al. Valproic acid intoxication: sense and
diabetes mellitus. Am J Med 1997; 102:99–110.
nonsense of haemodialysis. Neth J Med 2004; 62:333–336.
23 Lalau JD, Andrejak M, Morinie`re P, et al. Hemodialysis in the treatment of lactic
42 Singh SM, Mc Cormick BB, Mustata S, et al. Extracorporeal management of
acidosis in diabetics treated by metformin: a study of metformin elimination. Int
valproic acid overdose: a large regional experience. J Nephrol 2004; 17:43–
J Clin Pharmacol Ther Toxicol 1989; 27:1285 –1288.
24 Spiller HA, Sawyer TS. Toxicology of oral antidiabetic medications. Am J
43 Goodman JW, Goldfarb DS. The role of continuous venovenous replace-
Health-Syst Pharm 2006; 63:929–938.
ment therapy in the treatment of poisoning. Semin Dial 2006; 19:402–
25 Alivanis P, Giannikouris I, Paliuras C, et al. Metformin associated lactic acidosis
treated with continuous renal replacement therapy. Clin Ther 2006; 28:396–
44 Sztajnkrycer MD. Valproic acid toxicity: overview and management. J Toxicol
26 Guo PY, Storsley LJ, Finkle SN. Severe lactic acidosis treated with prolonged
¨ zkaya O, et al. Carbamazepine poisoning managed with
hemodialysis: recovery after massive overdoses of metformin. Semin Dial
haemodialysis and haemoperfusion in three adolescents. Nephrology 2007;
27 O’Malley GF. Emergency department management of the salicylate-poisoned
This is an interesting paper, demonstrating the similar effect of hemodialysis and
patient. Emerg Med Clin N Am 2007; 25:333–346.
This extensive review summarizes epidemiology, pathophysiology and clinical
46 Spiller HA. Management of carbamazepine overdose. Pediatr Emerg Care
presentation of salicylate poisoning and gives up-to-date recommendations for
47 Koh KH, Tan HH. High-flux hemodialysis treatment as treatment for
28 Dargan PI, Wallace CI, Jones AL. An evidence based flowchart to guide the
carbamazepine intoxication. Med J Malaysia 2006; 61:109–111.
management of acute salicylate (aspirin) overdose. Emerg Med J 2002;19:206–209.
48 Pichon N, Franc¸ois B, Chevreuil C, Gaulier JM. Albumin dialysis: a new
therapeutic alternative for severe diltiazem intoxication. Clin Toxicol 2006;
29 Henderson JH, McKenzie CA, Hilton PJ, Leach RM. Continuous venovenous
haemofiltration for the treatment of theophylline toxicity. Thorax 2001; 56:242–243.
49 Kerns W II. Management of b-adrenergic blocker and calcium channel
antagonist toxicity. Emerg Med Clin N Am 2007; 25:309–331.
30 Korsheed S, Selby NM, Fluck RJ. Treatment of severe theophylline poisoning
This extensive review summarizes the latest recommendations on the management
with the molecular adsorbent recirculating system (MARS). Nephrol Dial
of intoxications with b-adrenergic blockers and calcium channel antagonists,
focusing on supportive care, specific pharmacological therapy and nonpharma-
In this research letter the rapid clearance of theophylline by means of albumin
50 Craig S. Phenytoin poisoning. Neurocrit Care 2005; 3:161–170.
31 Mycyk MB, DesLauriers C, Metz J, et al. Compliance with poison center
fomepizole recommendations is suboptimal in cases of toxic alcohol poison-
51 Sen S, Ratnaraj N, Davies NA, et al. Treatment of phenytoin toxicity by the
molecular adsorbents recirculating system (MARS). Epilepsia 2003; 44:265–267.
32 Me´garbane B, Borron SW, Baud FJ. Current recommendations for treatment
of severe toxic alcohol poisonings. Intensive Care Med 2005; 31:189–195.
52 Diaz JH. Syndromic diagnosis and management of confirmed mushroom
poisonings. Crit Care Med 2005; 33:427–436.
33 Pizon AF, Brooks DE. Hyperosmolality: another indication for hemodialysis
following acute ethylene glycol poisoning. Clin Toxicol 2006; 44:181–183.
53 Enjalbert F, Rapior S, Nouguier-Soule´ J, et al. Treatment of amatoxin poison-
ing: 20-year retrospective analysis. J Toxicol Clin Toxicol 2002; 40:715–757.
34 Porter WH, Rutter PW, Bush BA, et al. Ethylene glycol toxicity: the role of
serum glycolic acid in hemodialysis. J Toxicol Clin Toxicol 2001; 39:607–
54 Faybik P, Hetz H, Baker A, et al. Extracorporeal albumin dialysis in patients
with Amanita phalloides poisoning. Liver Int 2003; 23 (Suppl 3):28–33.
Copyright Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
CEYLON COLLEGE OF PHYSICIANS MEDICINE UPDATE Vol. 18 No. 1 Compiled by Dr. Henry N. Rajaratnam MD FCCP FRCP (London) (Hon) FRACP (Hon) FSLCGP FACE 1:1 What’s new in TB?. a) Multi drug resistant TB – defined as resistance to at least Rifampicin and INAH are on the increase and considered incurable with conventional regimes. b) HIV increases multi drug resistance, a
La dinámica del conflicto colombiano, 1988-2003† Este documento presenta una base de datos detallada sobre el conflicto civil colombiano durante el período 1988-2003. Después de explicar la metodología empleada, presenta la evolución en el tiempo de las acciones del conflicto y las medidas de intensidad asociadas con estas acciones para todos los grupos que hacen parte de la confrontaci