Teste02a

Escola Secundária com 3º ciclo D. Dinis
12º Ano de Matemática – A
Tema I – Probabilidades e Combinatória
2º Teste de avaliação
• As cinco questões deste grupo são de escolha múltipla. • Para cada uma delas são indicadas quatro alternativas, das quais só uma está correta. • Escreva na sua folha de respostas a letra correspondente à alternativa que selecionar para cada questão. • Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita • Não apresente cálculos ou justificações. • Cada resposta certa vale 10 pontos, cada pergunta errada, não respondida, ou anulada, vale 0 (zero) pontos. 1. Qual das afirmações seguintes é necessariamente verdadeira?
A soma das probabilidades de dois acontecimentos incompatíveis é 1. O produto das probabilidades de dois acontecimentos incompatíveis é 1. A soma das probabilidades de dois acontecimentos contrários é 1. O produto das probabilidades de dois acontecimentos contrários é 1. 2. Seja S o conjunto de resultados associado a uma experiência aleatória.
Sejam A e B dois acontecimentos (A ⊂ S e B ⊂ S) Qual é o valor da probabilidade condicionada P (B) ? 3. Numa pequena república, o exame teórico de condução tem 20 perguntas e o candidato, para
ser aprovado, não pode falhar mais de 3. O senhor Raimundo, cidadão dessa república, tem andado a fazer testes e ultimamente a sua média é acertar 11 em cada 12 perguntas. Qual é em percentagem, aproximada às unidades, a probabilidade de ele passar no exame? 5. Num curso superior existem 10 disciplinas de índole literária, das quais 3 são de literatura
contemporânea. Um estudante pretende escrever-se em 6 disciplinas desse curso. Quantas escolhas pode ele fazer se tiver de se inscrever em, pelo menos, duas disciplinas de Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos ou esquemas que tiver de efectuar e todas as justificações necessárias. Atenção: quando não é indicada a aproximação que se pede para um resultado,
1. A Rita e a Joana são amigas e estão a jogar com dois dados diferentes: um tetraedro que
sorteia um número entre 1 e 4, e um octaedro que dá um número de 1 a 8. Lançam-se os dois dados e somam os números que saíram. Considere a variável X – número que, em cada jogada, é a soma dos valores saídos nos dois dados. 1.1. Construa uma tabela de distribuição de probabilidades para a variável X.
1.2. Se a soma for 6, 7, 8 ou 9 ganha a Rita. Se a soma for 2, 3, 4, 5, 10, 11 ou 12 ganha a
2. Num tabuleiro quadrado, dividido em 9 pequenos quadrados, vão colocar-
2.1. De quantas maneiras podem ser colocadas as 9 peças?
2.2. Supondo que as peças são colocadas, ao acaso, determine a
probabilidade de uma diagonal ficar só com peças azuis? 3. Três casais, entre eles, o casal Silva, resolveram fazer uma viagem numa carrinha de seis
lugares, incluindo o condutor. Apenas o casal Silva não está habilitado a conduzir. A
disposição dos seis lugares na carrinha está esquematizado 3.1. De quantas maneiras os seis passageiros podem
ocupar os lugares durante a viagem, sabendo que cada 3.2. Chegados ao destino, pediram a um jovem que lhes tirasse uma fotografia. Para tal
Qual é a probabilidade de pelo menos os elementos de um dos casais não terem ficado juntos? Apresente o resultado em percentagem, arredondado às décimas. 4. Vinte e cinco jovens (doze rapazes e treze raparigas) pretendem ir ao cinema. Chegados lá,
verificam que existem apenas vinte bilhetes (para duas filas com 10 lugares consecutivos em cada um delas). Comprados os vinte bilhetes, distribuem-nos ao acaso. Como é evidente, cinco dos jovens irão ficar sem bilhete. Qual é a probabilidade de uma fila ficar ocupada só com rapazes e a outra só com raparigas? 5. Um saco contém nove bolas numeradas de 1 a 9. As bolas com número ímpar são vermelhas
e as bolas com número par são brancas. 5.1. Numa aula de Matemática a professora colocou o seguinte problema: “Retiram-se, ao
acaso, sucessivamente e com reposição, quatro bolas. Qual é a probabilidade de haver alternância nas cores das quatro bolas extraídas?” Número de casos favoráveis: 2 (BVBV ou VBVB) Concorda com a resolução apresentada pela Joana? Caso não concorde, identifique o erro cometido, corrija-o e explique a razão da correção. 5.2. Considere a experiência aleatória que consiste em retirar, ao acaso, duas bolas, uma
após outra, sem reposição. Sejam V, B e I os acontecimentos: V: ”a primeira bola extraída é vermelha” B: ”a segunda bola extraída é branca” I: ”a soma dos números das bolas extraídas é um número ímpar” Sem utilizar a fórmula da probabilidade condicionada, indique o valor de P (I| (V ∪ B)) . Numa pequena composição explique o raciocínio efetuado. COTAÇÕES DO GRUPOII
QUESTÃO
COTAÇÃO
Escola Secundária com 3º ciclo D. Dinis
12º Ano de Matemática – A
Tema I – Probabilidades e Combinatória
2º Teste de avaliação
1. (C) Das afirmações dadas é necessariamente verdadeira “A soma das probabilidades de dois
acontecimentos contrários é 1”, porque acontecimentos contrários são acontecimentos incompatíveis cuja reunião é o espaço de resultados. 2. (D) Seja S o conjunto de resultados associado a uma experiência aleatória.
Sejam A e B dois acontecimentos (A ⊂ S e B ⊂ S) Sabe-se que: P(A) = 0,3, P(A ∩ B) = 0,1 e P (A ∪ B) = 0,8 . O valor de P(B) é 0,4 porque P(A ∪ B) = P(A) + P(B) − P(A ∩ B) e de acordo com os dados conseguimos concluir que 0,8 = 0,3 + P (B) − 0,1⇔ P(B) = 0,6 e como 3. (C) Numa pequena república, o exame teórico de condução tem 20 perguntas e o candidato,
para ser aprovado, não pode falhar mais de 3. O senhor Raimundo, cidadão dessa república, tem andado a fazer testes e ultimamente a sua média é acertar 11 em cada 12 perguntas. Em percentagem a probabilidade de ele passar no exame é 92% porque ,3) ≃ 0,92 e dá-nos a probabilidade de o senhor Raimundo errar no 4. (C) 2008
5. (D) Num curso superior existem 10 disciplinas de índole literária, das quais 3 são de literatura
contemporânea. Um estudante pretende escrever-se em 6 disciplinas desse curso. O número de escolhas que ele pode fazer se tiver de se inscrever em, pelo menos, duas disciplinas de literatura contemporânea é 3 número de maneiras de escolher 2 disciplinas de literatura contemporânea e as restantes 4 das 7 que não são de literatura contemporânea e 7C representa o número de maneiras de escolher 3 das 7 disciplinas que não são de literatura contemporânea e as 3 de literatura 1. A Rita e a Joana são amigas e estão a jogar com dois
dados diferentes: um tetraedro que sorteia um número de 1 a 4, e um octaedro que dá um número de 1 a 8. Lançam os dois dados e somam os números que saíram. Consideremos a variável X – número que, em cada jogada, é a soma dos valores saídos nos dois dados. 1.1. Vamos construir uma tabela de probabilidades, começando por construir uma tabela de
soma dos resultados nos dois dados e em seguida construir a tabela de distribuição das 1.2. Se a soma for 6, 7, 8 ou 9 ganha a Rita. Se a soma for 2, 3, 4, 5, 10, 11 ou 12 ganha a
Joana. Chamemos A ao acontecimento “ganha a Rita” e B ao acontecimento “ganha a As duas amigas têm a mesma probabilidade de ganhar. 2. Num tabuleiro quadrado dividido em 9 pequenos quadrados vão colocar-se
2.1. O número de maneiras de colocar as 9 peças é 9C = 84 .
2.2. Supondo que as peças são colocadas, ao acaso, a probabilidade de
uma diagonal ficar só com peças azuis é tal que o nº de casos possíveis é 84 e o nº de casos favoráveis é 2 por termos exatamente 3 peças azuis e duas diagonais, para cada diagonal há apenas uma maneira de colocar as peças azuis. 3. Três casais, entre eles, o casal Silva, resolveram fazer uma
viagem numa carrinha de seis lugares, incluindo o condutor. Apenas o casal Silva não está habilitado a conduzir. A disposição dos seis lugares na carrinha está esquematizada 3.1. Considerando que temos os dois bancos lado a lado ligados o casal Silva podia ocupar 2
dos 3 pares de bancos e em cada um deles podiam trocar de posição podendo assim sentar-se de 4 maneiras, o segundo casal a sentar-se dispunha também ele de 2 bancos e podendo então sentar-se também de 4 maneiras diferentes, o último casal teria de ficar com o banco que sobra e sentar-se-ia de 2 maneiras diferentes. Então o número de maneiras de os seis passageiros ocuparem os lugares durante a viagem, sabendo que cada casal faz a viagem lado a lado e que só o casal Silva não pode conduzir é 3.2. Chegados ao destino, pediram a um jovem que lhes tirasse uma fotografia. Para tal
A probabilidade de pelo menos os elementos de um dos casais não terem ficado juntos é o contrário de todos os casais terem ficado juntos. ≃ 0,933 . A probabilidade pedida é 93,3% 4. Vinte e cinco jovens (doze rapazes e treze raparigas) pretendem ir ao cinema. Chegados lá,
verificam que existem apenas vinte bilhetes (para duas filas com 10 lugares consecutivos em cada um delas). Comprados os vinte bilhetes, distribuem-nos ao acaso. Como é evidente, cinco dos jovens irão ficar sem bilhete. Calculemos a probabilidade de uma fila ficar ocupada só com rapazes e a outra só com 5. Um saco contém nove bolas numeradas de 1 a 9. As bolas com número ímpar são vermelhas
e as bolas com número par são brancas. 5.1. Numa aula de Matemática a professora colocou o seguinte problema: “Retiram-se, ao
acaso, sucessivamente e com reposição, quatro bolas. Qual é a probabilidade de haver alternância nas cores das quatro bolas extraídas?” Número de casos favoráveis: 2 (BVBV ou VBVB) A resolução apresentada pela Joana está incorreta. O erro está na contagem do número de casos favoráveis porque BVBV pode obter-se de 4 × 5 × 4 × 5 = 400 e VBVB pode obter- se de 5 × 4 × 5 × 4 = 400 . Assim há 800 casos favoráveis. Probabilidade pedida: 5.2. Considere a experiência aleatória que consiste em reitrar, ao acaso, duas bolas, uma
após outra, sem reposição. Sejam V, B e I os acontecimentos: V: ”a primeira bola extraída é vermelha” B: ”a segunda bola extraída é branca” I: ”a soma dos números das bolas extraídas é um número ímpar” Sem utilizar a fórmula da probabilidade condicionada, vamos indicar o valor de P (I| (V ∪ B)) é a probabilidade da soma 1 dos números das bolas extraídas ser um número ímpar, sabendo que o número da 11 12 13 14
10 11 12 13
9 10 11 12 13 14 15 16 17
Os casos favoráveis são apenas 20 resultantes da soma de ímpar com par. QUESTÃO
COTAÇÃO
Escola Secundária com 3º ciclo D. Dinis
12º Ano de Matemática – A
Tema I – Probabilidades e Combinatória
2º Teste de avaliação – Critérios de correcção
Grupo I (50 pontos)
Cada resposta certa vale 10 pontos, cada pergunta errada, não respondida, ou anulada, vale 0 (zero) pontos. Grupo II (150 pontos)
• Tabela de distribuição das probabilidades • Calcular o número de casos possíveis • Calcular o número de casos favoráveis • Calcular o número de casos possíveis • Calcular o número de casos favoráveis Total …………………………………………………………………………………………………

Source: http://profs.ccems.pt/RosaFerreira/2011_2012/avaliacao/teste02A.pdf

As transformações psico-sociais do estagiário enquanto sujeito de ação cultural

“LEITURA: ASAS DA LIBERDADE: PROJETO HUMANIZADOR À LUZ DA BIBLIOTERAPIA COM AÇÃO SOCIAL TRANSFORMADORA NOS ENVOLVIDOS” Prof. Especialista em Administração de Sistemas de Informação Centro Universitário de Formiga – UNIFOR Prof. Especialista em Tratamento da Informação Científica e Tecnológica e-mail: Centro Universitário de Formiga – UNIFOR Área 3. Recursos y servicios

The study of cardiac function during anesthesia by phonocardiogram

JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA, VOL. 6, NO. 1, MARCH 2008 Effect of Mixed Anesthesia on Cardiac Function by Phonocardiogram Fei Han, Hong-Mei Yan, Xin-Chuan Wei, and Qing Yan Abstract ⎯ Objective of this investigation is to further testing are highly consistent and strongly suggestive of analyze the cardiac function status change by phonocar- changes i

Copyright © 2014 Medical Pdf Articles